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Filipović D., Term-Structure Models (2009)
Fusai G. and Roncoroni A., Implementing Models in Quantitative Finance (2008)
Geman H., Madan D., Pliska S.R. and Vorst T. (Editors), Mathematical Finance – Bachelier
Congress 2000 (2001)
Gundlach M. and Lehrbass F. (Editors), CreditRisk+ in the Banking Industry (2004)
Jeanblanc M., Yor M., Chesney M., Mathematical Methods for Financial Markets (2009)
Jondeau E., Financial Modeling Under Non-Gaussian Distributions (2007)
Kabanov Y.A. and Safarian M., Markets with Transaction Costs (2010)
Kellerhals B.P., Asset Pricing (2004)
Külpmann M., Irrational Exuberance Reconsidered (2004)
Kwok Y.-K., Mathematical Models of Financial Derivatives (1998, 2nd ed. 2008)
Malliavin P. and Thalmaier A., Stochastic Calculus of Variations in Mathematical Finance
(2005)
Meucci A., Risk and Asset Allocation (2005, corr. 2nd printing 2007, Softcover 2009)
Pelsser A., Efficient Methods for Valuing Interest Rate Derivatives (2000)
Platen E. and Heath D., A Benchmark Approach to Quantitative Finance (2006, corr. printing
2010)
Prigent J.-L., Weak Convergence of Financial Markets (2003)
Schmid B., Credit Risk Pricing Models (2004)
Shreve S.E., Stochastic Calculus for Finance I (2004)
Shreve S.E., Stochastic Calculus for Finance II (2004)
Yor M., Exponential Functionals of Brownian Motion and Related Processes (2001)
Zagst R., Interest-Rate Management (2002)
Zhu Y.-L., Wu X., Chern I.-L., Derivative Securities and Difference Methods (2004)
Ziegler A., Incomplete Information and Heterogeneous Beliefs in Continuous-time Finance
(2003)
Ziegler A., A Game Theory Analysis of Options (2004)



Eckhard Platen � David Heath

A Benchmark Approach
to Quantitative Finance



Eckhard Platen
School of Finance and Economics
and School of Mathematical Sciences
University of Technology, Sydney
PO Box 123
Broadway, NSW 2007
Australia
eckhard.platen@uts.edu.au

David Heath
Centre for Mathematics and its Applications
Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200
Australia
david.heath@maths.anu.edu.au

ISBN 978-3-540-26212-1 e-ISBN 978-3-540-47856-0
DOI 10.1007/978-3-540-47856-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2006932290

Mathematics Subject Classification (2000): 90A12, 60G30, 62P20
JEL Classification: G10, G13

© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:eckhard.platen@uts.edu.au
mailto:david.heath@maths.anu.edu.au


Authors’ Comments on the Corrected Second
Printing

The original printing of the book appeared in 2006. Its very positive reception
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typographical errors in the original printing of the monograph. We would
appreciate receiving any suggestions for further improvements and thank all
those readers who have pointed out misprints and errors to us.

August 2009 Eckhard Platen
David Heath



Preface

In recent years products based on financial derivatives have become an indis-
pensable tool for risk managers and investors. Insurance products have become
part of almost every personal and business portfolio. The management of mu-
tual and pension funds has gained in importance for most individuals. Banks,
insurance companies and other corporations are increasingly using financial
and insurance instruments for the active management of risk. An increasing
range of securities allows risks to be hedged in a way that can be closely tai-
lored to the specific needs of particular investors and companies. The ability
to handle efficiently and exploit successfully the opportunities arising from
modern quantitative methods is now a key factor that differentiates market
participants in both the finance and insurance fields. For these reasons it is
important that financial institutions, insurance companies and corporations
develop expertise in the area of quantitative finance, where many of the asso-
ciated quantitative methods and technologies emerge.

This book aims to provide an introduction to quantitative finance. More
precisely, it presents an introduction to the mathematical framework typically
used in financial modeling, derivative pricing, portfolio selection and risk man-
agement. It offers a unified approach to risk and performance management by
using the benchmark approach, which is different to the prevailing paradigm
and will be described in a systematic and rigorous manner.

This approach uses the growth optimal portfolio as numeraire and the real
world probability measure as pricing measure. The existence of an equivalent
risk neutral probability measure is not required, which is one of the aspects
distinguishing the approach in this book from other more conventional texts
in the area. It is our experience that many practitioners find the use of the
real world probability measure attractive for pricing because it is natural and
pricing can still be carried out even under circumstances when a risk neutral
probability measure cannot exist.

We have attempted to write a multi-purpose book that provides informa-
tion and methods for a wide range of professionals, researchers and graduate
students. It is designed for three groups of readers. In the first instance it
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should provide useful information to financial analysts and practitioners in
the investment, banking and insurance industries. Other professionals at fi-
nancial software companies, hedge funds, consultants, regulatory authorities
and government agencies may significantly benefit from using this book. Sec-
ondly, the book aims to introduce those with a reasonable basic mathematical
background to the area of quantitative finance. Engineers, computer scientists,
numerical analysts, physicists, theoretical chemists, biologists, astrophysicists,
statisticians, econometricians, actuaries and other readers should be able to
gain access to the field through the book. Thirdly, researchers in financial
mathematics will find the later parts of the book interesting and possibly
challenging. In particular, the monograph aims to stimulate further develop-
ments of the benchmark approach.

The material presented is a self-contained introduction that could be part
of a coursework masters or PhD program in quantitative finance. The areas
of probability and statistics, stochastic calculus, optimization and numerical
methods relevant to finance are all introduced. The book has been designed in
a modular way with cross references so that it can also be used as a handbook
allowing relevant definitions, formulas and results to be easily looked up.

The monograph is divided into fifteen chapters. The first two chapters
summarize fundamental results from probability and statistics which are es-
sential for quantitative finance. Some statistical analysis on the log-return
distribution of indices is included at the end of Chap. 2.

The Chaps. 3 and 4 introduce stochastic processes. The stochastic cal-
culus needed for financial modeling using stochastic differential equations is
presented in Chaps. 5 to 7. Stochastic differential equations with jumps are
introduced from a finance perspective. Some of the material goes beyond what
can be found in standard textbooks.

In Chap. 8 basic financial derivatives are introduced from a hedging per-
spective. European call and put options are priced via the corresponding
Black-Scholes partial differential equation. The sensitivities of these option
prices to movements in parameter values are studied. Hedge simulations are
performed, which illustrate derivative pricing and hedging.

Chapter 9 presents various alternative pricing methodologies. First, the
concept of real world pricing is introduced. Several other pricing methods
are shown to be special cases of real world pricing. These include actuarial
pricing, risk neutral pricing and pricing under change of numeraire. The exis-
tence of an equivalent risk neutral probability measure is not required under
the benchmark approach. The chapter concludes by introducing the Girsanov
theorem, the Bayes rule and the Feynman-Kac formula.

Chapter 10 develops a unified modeling framework for continuous financial
markets under the benchmark approach. It presents a range of new concepts
and ideas that do not fit under the presently prevailing approaches. A diversi-
fication theorem is derived, which shows under some regularity condition that
diversified portfolios approximate the growth optimal portfolio. This allows
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us to interpret a diversified market index as a proxy for the growth optimal
portfolio.

Chapter 11 derives results on portfolio optimization via the maximization
of Sharpe ratios. The capital asset pricing model (CAPM), the Markowitz
efficient frontier, two fund separation and results on expected utility maxi-
mization, utility indifference pricing, derivative pricing and hedging are also
presented in this chapter.

The modeling of stochastic volatility of stock market indices under the
benchmark approach is discussed in Chap.12. This analysis includes the pric-
ing of index derivatives under models that do not admit an equivalent risk
neutral probability measure. More general volatility models than those per-
mitted under the standard risk neutral approach are covered.

In Chap.13 it is shown that the discounted growth optimal portfolio follows
the dynamics of a time transformed squared Bessel process of dimension four.
Making the drift of the discounted growth optimal portfolio a function of time,
yields the minimal market model. Derivative prices which follow under this
parsimonious model appear to be rather realistic. Long term derivatives can
be realistically priced. These prices deviate significantly from those obtained
under risk neutral pricing because the hypothetical risk neutral measure has
after several years a total mass that is significantly less than one. Extensions
of the minimal market model with random scaling are considered.

In Chap. 14 models are analyzed that permit jumps to model event risk.
Most of the results of previous chapters are generalized to jump diffusion
markets. Two market models illustrate differences in derivative pricing under
the standard risk neutral and the benchmark approach.

Finally, in Chap.15 a brief introduction is given from a unifying perspective
to basic numerical methods for quantitative finance. This introduction covers
scenario simulation, Monte Carlo simulation, tree based methods and finite
difference methods. A binomial tree method is developed for the benchmark
approach and finite difference methods are explained as numerical methods
for systems of coupled ordinary differential equations.

Selected exercises at the end of each chapter should enable the reader
to further develop skills and test the understanding of the subject. Solutions
to these exercises are included at the end of the book. The material can be
taught at different levels. The first sections in most chapters provide a less
technical presentation of the subject. At the end of some sections or chapters
(*)-subsections or (*)-sections have been included. These are more technical
in nature and are usually not necessary for a first reading.

The formulas are numbered according to the chapter and section where
they appear. Assumptions, theorems, lemmas, definitions and corollaries are
numbered sequentially in each section. The most common notations are listed
at the beginning of the book and an index of keywords is given at its end.
Some readers may find the author index at the end of the book useful.

Substantial work is involved in studying the material presented. This
should not be underestimated by the reader. Actively solving exercises is
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strongly recommended. The reward for this demanding work will be a sound
understanding of essential methods in quantitative finance with an emphasis
on the benchmark approach.

The authors would like to thank several colleagues and PhD students for
many valuable suggestions on the manuscript, including Nicola Bruti-Liberati,
Hans Bühlmann, Carl Chiarella, Boris Choy, Morten Christensen, Marc Crad-
dock, Ernst Eberlein, Robert Elliott, Kevin Fergusson, Chris Heyde, John
van der Hoek, Hardy Hulley, Monique Jeanblanc, Leah Kelly, Truc Le, Shane
Miller, Alex Novikov, Alun Pope, Wolfgang Runggaldier and Marc Yor. The
authors would like to express their deep gratitude to Katrin Platen, who orga-
nized all technical work on the book, in particular, many figures. She carefully
and patiently type set the countless versions of the extensive manuscript. Fi-
nally, we like to thank Catriona Byrne from Springer Verlag for her excellent
work and for encouraging us to write this book.

It is greatly appreciated if readers could forward any errors, misprints or
suggested improvements to: eckhard.platen@uts.edu.au

The interested reader is likely to find updated information about the
benchmark approach, as well as, teaching material related to the book on
the webpage of the first author under “Benchmark Approach”:

http://www.business.uts.edu.au/
finance/staff/Eckhard/Benchmark Approach.html

Sydney, Eckhard Platen
March 2006 David Heath

mailto:eckhard.platen@uts.edu.au
http://www.business.uts.edu.au/finance/staff/Eckhard/Benchmark_Approach.html
http://www.business.uts.edu.au/finance/staff/Eckhard/Benchmark_Approach.html
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6.3 Some Applications of the Itô Formula . . . . . . . . . . . . . . . . . . . . . . 213
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1

Preliminaries from Probability Theory

This chapter reviews some important results from probability theory and fixes
notation. First we introduce discrete and continuous random variables and
their distributions. Then we discuss functionals of random variables such as
moments. Furthermore, we introduce certain classes of distributions and also
multivariate distributions together with copulas.

1.1 Discrete Random Variables and Distributions

In financial markets one can observe the prices of assets such as stocks, com-
modities, currencies, futures, bonds etc. It is a challenge to model these ran-
dom quantities in a satisfactory manner.

Log-Returns

Let us assume that we observe an asset price at times ti = iΔ for i ∈ {0, 1, . . .}
with time step size Δ > 0. The time Δ between two successive observations is
typically the length of one day. If Xti denotes the asset price at time ti, then
the log-return Rti at this time is defined as

Rti = ln(Xti+1) − ln(Xti) = ln
(
Xti+1

Xti

)
(1.1.1)

for i ∈ {0, 1, . . .}.
We define the daily log-return of an asset price as the daily increment

of the natural logarithm of this price because, as we shall see later on, this
reflects well the growth nature of economies and financial markets. Typically
log-returns exhibit considerable variability.

We focus in this book on the modeling of log-returns while we introduce
the basic concepts of probability, statistics, stochastic processes, stochastic
calculus and stochastic differential equations. It will turn out that stochastic

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
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differential equations provide an ideal mathematical framework for the mod-
eling of financial quantities. In this context log-returns will also allow us to
apply the powerful tools of stochastic calculus. This is not so conveniently
achieved when using, so-called, returns that are of the form

R̃ti =
Xti+1 −Xti

Xti

and closely approximate log-returns when these are small. As we shall see,
log-returns are more tractable in continuous time.

Relative Frequencies and Probabilities

Let us interpret an asset’s log-return Rti as the outcome of an experiment
based on observations of the data. Suppose, for simplicity, that we classify the
log-returns as strictly negative, zero or positive. We denote these elementary
outcomes or states by ω1, ω2, ω3, indicating that we observe a negative, zero
or strictly positive log-return, respectively. We call the set of outcomes or
states Ω = {ω1, ω2, ω3} the sample space for our experiment.

If we repeat our experiment N times, that is, we observe for a stock daily
log-returns on N different days, and count the number N(ωi) of times, that
the outcome ωi occurs, we can form the relative frequency

fi(N) =
N(ωi)
N

.

For smaller N this number usually varies considerably. As N becomes larger,
our experience would indicate that the relative frequency should approach a
limit pi, written as

lim
N→∞

fi(N) = pi,

which we call the probability of outcome ωi.
To illustrate the above example let us look at the daily IBM share price in

US dollars over the period from 1977 until 1997, which is shown in Fig. 1.1.1.
The corresponding log-returns are plotted in Fig. 1.1.2. In Fig. 1.1.3 we then
display the relative frequencies f1(ti), f2(ti) and f3(ti), i ∈ {0, 1, . . .}, of nega-
tive, zero and strictly positive log-returns, respectively, during the time period.
Note that after some wild fluctuations for small time t, at the beginning of
the period, the relative frequency for negative log-returns stabilizes around
a value close to p1 = 0.465. Similarly, we obtain at the end of the period
a value p3 = 0.463 for the relative frequency of strictly positive log-returns.
The value p2 = 0.072 is then obtained for the rather small probability of zero
log-returns. Clearly, we have 0 ≤ pi ≤ 1 for each i ∈ {1, 2, 3} and

∑3
i=1 pi = 1,

that is, the probabilities p1, p2 and p3 add up to one.
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Fig. 1.1.1. IBM share price from 1977 until 1997

Fig. 1.1.2. Log-returns of IBM stock

Probability Space

To analyze a model one is often interested in combinations of outcomes. We
call such a combination an event if we can identify it either by its occurrence
or its non-occurrence. Obviously, if a subset A of the set of outcomes Ω is
an event, then its complement Ac = {ωi ∈ Ω : ωi 
∈ A}, which denotes the
set of all ωi from the sample space Ω that do not belong to the set A, must
also be an event. In the case of the above example we might consider the
event A = {ω1, ω2} that corresponds to the occurrence of either a negative or
zero log-return. The complement of this event is then Ac = {ωi ∈ Ω : ωi 
∈
{ω1, ω2}} = {ω3}. This is the event {ω3} of a strictly positive log-return.

In particular, the whole sample space Ω is an event, which is called the
sure event since one of its outcomes must always occur. The complement of Ω
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Fig. 1.1.3. Relative frequency over time

is the empty set ∅, which is also defined as an event but never occurs. If A and
B are events, then the event A ∪ B occurs if either A or B occurs, whereas
the event A ∩B occurs if both A and B occur. With A = {ω1, ω2}, as in our
example, and the event B = {ω2} indicating a zero log-return we note that
A ∪ B = {ω1, ω2} ∪ {ω2} = {ω1, ω2} stands for an event consisting of either
negative or zero log-returns and A∩B = {ω1, ω2} ∩ {ω2} = {ω2} is the event
which indicates only a zero log-return.

In the above discussion we have only mentioned experiments with a finite
number of outcomes. However, the introduction of probabilities based on an
infinite set of outcomes and the use of relative frequencies to define probabil-
ities can lead to conceptual subtleties and other mathematical problems. To
resolve these difficulties, Kolmogorov developed in the late 1920s an axiomatic
approach to probability theory. In this approach the probabilities represent
numbers assigned to corresponding events. In what follows we shall employ
this axiomatic framework.

Let us denote by P (A) the probability of the occurrence of an event A
that is taken from the collection of events A that corresponds to the sample
space Ω. Then from corresponding properties of relative frequencies we would
expect these probabilities to satisfy the following relationships

0 ≤ P (A) ≤ 1, (1.1.2)

P (Ac) = 1 − P (A), (1.1.3)

P (∅) = 0, P (Ω) = 1, (1.1.4)

and
P (A ∪B) = P (A) + P (B) (1.1.5)

if A and B are exclusive, that is A∩B = ∅ for events A and B taken from A.
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The above relationships allow us, for a given finite sample space Ω =
{ω1, ω2, . . . , ωn}, consistently to allocate probabilities to each event. One can
deduce that

n⋃

i=1

Ai and
n⋂

i=1

Ai

are events if A1, A2, . . . , An are events, and that

P

(
n⋃

i=1

Ai

)

=
n∑

i=1

P (Ai)

if A1, A2, . . . , An are mutually exclusive, that is if Ai ∩ Aj = ∅ for all i, j ∈
{1, 2, . . . , n} with i 
= j.

For the above example suppose we assign the probabilities pi = P ({ωi})
for each outcome ωi, i ∈ {1, 2, 3}, as obtained from frequency records. Then
the event A = {ω1, ω2} of non-strictly positive outcomes has, according to
(1.1.5), the probability

P (A) = P ({ω1, ω2}) = P ({ω1} ∪ {ω2}) = P ({ω1}) + P ({ω2}) = p1 + p2.

The essential probabilistic information that characterizes an experiment
can be succinctly summarized in the corresponding triplet (Ω,A, P ) consist-
ing of the sample space Ω, the collection of events A and the probability
measure P , where these have to satisfy certain relationships. In the above
analysis we have considered finite collections of events. To cover the case of
infinite collections we must specify these properties to avoid contradictions.
We assume that the collection of events A is a sigma-algebra, which means
that

Ω ∈ A, (1.1.6)

if A ∈ A then Ac ∈ A, (1.1.7)

if A ∈ A and B ∈ A then A ∪B ∈ A (1.1.8)

and if Ai ∈ A for any i ∈ N = {1, 2, . . .} then

( ∞⋃

i=1

Ai

)

∈ A. (1.1.9)

In the case of infinite collections, equation (1.1.5) is replaced by what is called
countably additive probabilities. This means,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai) (1.1.10)

for any sequence (Ai)i∈N of mutually exclusive events.
It can be shown by DeMorgan’s law that a sigma-algebra is closed under

finite and countable intersections of events. In addition, if a set function de-
fined on a sigma-algebra satisfies (1.1.2) and (1.1.10) with P (Ω) = 1, then
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(1.1.3)–(1.1.5) also hold and hence this set function would be a probability
measure.

A triplet (Ω,A, P ) is then called a probability space and the relations
(1.1.2)–(1.1.5) can be shown to form a consistent set of rules for modeling
probabilities in this space. This kind of structure will be used for all of our
modeling work described in this book. Since the models that we can construct
will always remain abstract objects, they can reflect reality only to a limited
extent. It will be our aim to introduce more and more flexible mathematical
structures that provide the potential to model successfully complex stochas-
tic phenomena in finance. However, the reader should never believe that there
is anything like a perfect model. Even if some model were to become very
successful, the market would regularly demand further modifications and ex-
tensions to the model.

The relations (1.1.2)–(1.1.5) allow us to prove in a straightforward manner
that if A,B ∈ A and A ⊆ B then

P (A) ≤ P (B). (1.1.11)

Furthermore, if A,B ∈ A then

P (A ∩Bc) = P (A) − P (A ∩B). (1.1.12)

There may be some events A with P (A) = 0. These are then called null events.
On the other hand, there may be some event B for which P (B) = 1. In this
case we say B has occurred almost surely (a.s.) or with probability one.

Probabilities

The probability P (A) of an event A can be interpreted as a measure of the
likelihood that A occurs. If we have some additional information, such as that
another event has occurred, then our estimate of this likelihood may change.
For instance, if we know in the above example that the event A = {ω1, ω2} of
having no strictly positive log-return has occurred, then conditioned on this
information, the conditional probabilities of observing negative or zero log-
returns will add up to one. We denote by P ({ω1}

∣
∣A) the conditional proba-

bility that a negative log-return, the outcome ω1, will be observed, given that
the event A = {ω1, ω2} has occurred. Note that this conditional probability
can be expressed by the ratio

P ({ω1}
∣
∣A) =

P ({ω1} ∩A)
P (A)

=
P ({ω1})

P ({ω1, ω2})
,

where P (A) > 0. This relation is readily suggested from the ratio of relative
frequencies

f1(N)
f1(N) + f2(N)

=
N(ω1)

N
N(ω1)

N + N(ω2)
N

=
N(ω1)

N(ω1) +N(ω2)
,
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where N(ω1) and N(ω2) denote the number of outcomes ω1 and ω2, respec-
tively, that have occurred out of N repetitions of the experiment.

In general, the conditional probability P (A
∣
∣B) for the event A given that

the event B has occurred is defined by the formula

P (A
∣
∣B) =

P (A ∩B)
P (B)

(1.1.13)

provided P (B) > 0. This formula is also called the Bayes formula. As a
consequence of (1.1.13) one obtains

P (A)P (B
∣
∣A) = P (B)P (A

∣
∣B), (1.1.14)

which is sometimes called Bayes’ Theorem.
Conditional probabilities have similar properties to ordinary probabilities,

for instance, they sum to one, when conditioned on the same B.
The likelihood for the occurrence of an event could be unaffected by

whether or not another event B has occurred. In such a case the conditional
probability P (A

∣
∣B) should equal P (A), which implies together with (1.1.13)

that
P (A ∩B) = P (A)P (B). (1.1.15)

We say that the events A and B are independent if and only if (1.1.15) holds.
By assuming P (B) > 0 and rearranging formula (1.1.15) we see that events
A and B are independent if

P (A) =
P (A ∩B)
P (B)

. (1.1.16)

For instance, if we extend slightly our example and consider the log-returns
from two different days to be independent, then the event characterizing the
log-return from the first day does not affect the event that describes the log-
return for the second day. In this example the second log-return is assumed
to be not influenced by the outcome of the first log-return and vice versa.

More generally we say that m events A1, A2, . . . , Am are independent if

P (Ai1 ∩Ai2 ∩ . . . ∩Aik
) = P (Ai1)P (Ai2) . . . P (Aik

) (1.1.17)

for all k ∈ N and non-empty subsets {i1, i2, . . . , ik} of the set of indices
{1, 2, . . . ,m}.

One can show that if A1, A2, B ∈ A and P (B) > 0, then

P
(
A1 ∩Ac

2

∣
∣B
)

= P
(
A1

∣
∣B
)
− P

(
A1 ∩A2

∣
∣B
)
. (1.1.18)

A sequence of events (Ai)i∈N with Ai ∈ A for all i ∈ N is called a partition
of Ω if

∞⋃

i=1

Ai = Ω, (1.1.19)
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and A� ∩ Am = ∅ for all 
 
= m. This allows us to formulate the following
statement on the total probability. If (Ai)i∈N is a partition ofΩ with P (Ai) > 0
for all i ∈ N , then for any event B ∈ A one obtains the representation

P (B) =
∞∑

i=1

P
(
B
∣
∣Ai

)
P (Ai). (1.1.20)

This formula can be very helpful for calculating the probabilities of certain
events.

Random Variables and Distributions

We are often interested in assigning some numerical quantity to the outcomes
of a probabilistic experiment. For instance, in our stock log-return example,
the quantity X(ω) might take the value 1 for a strictly positive log-return, 0
for a zero log-return and −1 for a negative log-return.

These assigned quantities correspond to the values taken by a function
X : Ω → �, where � = (−∞,∞) is the set of real numbers. In our example
we have

X(ω) =

⎧
⎨

⎩

1 for ω = ω1

0 for ω = ω2

−1 for ω = ω3.
(1.1.21)

More generally, given a probability space (Ω,A, P ) we say, that a function
X : Ω → � is an A-measurable function or a random variable if the set
{ω ∈ Ω : a < X(ω) ≤ b} is an event for each a, b ∈ � with a < b. This means
that this set is an element of A. Using this definition it can be shown that if
X is a random variable, then it holds for any Borel subset of the real line

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A,

see Shiryaev (1984). We say that two random variables X and Y are indepen-
dent if the corresponding events {ω ∈ Ω : X(ω) ≤ a} and {ω ∈ Ω : Y (ω) ≤ b}
are independent for all a, b ∈ �.

Now it is appropriate to introduce for a random variable X its distribution
function FX : � → [0, 1] that is defined for each real valued x ∈ � by the
relation

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x})

= P (X ≤ x). (1.1.22)

Here we have used in the last term an abbreviated notation for the probability
of an event, which will also be used in other parts of the book. In Fig. 1.1.4
we show the three probabilities, p1 = 0.465, p2 = 0.072 and p3 = 0.463 for the
stock log-return example with possible outcomes −1, 0, 1, respectively, that is
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Fig. 1.1.4. Probabilities for the stock log-return example

Fig. 1.1.5. Distribution for the stock log-return example

P (X = x) =

⎧
⎨

⎩

p1 for x = −1
p2 for x = 0
p3 for x = 1.

(1.1.23)

The distribution function is then according to (1.1.22) given by

FX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < −1
p1 for −1 ≤ x < 0

p1 + p2 for 0 ≤ x < 1
1 for 1 ≤ x

(1.1.24)

for x ∈ �, which we plot in Fig. 1.1.5.

Two-Point Distribution

A simple random variable is the indicator function 1A : Ω → {0, 1} of an
event A ∈ A, where
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1A(ω) =
{

1 for ω ∈ A
0 for ω /∈ A.

(1.1.25)

Here the corresponding distribution function is of the form

F1A
(x) =

⎧
⎨

⎩

0 for x < 0
1 − P (A) for 0 ≤ x < 1

1 for 1 ≤ x,
(1.1.26)

where P (A) denotes the probability of the event A. This is an example of a
two-point random variable which takes two distinct real values x1 and x2 with
probabilities p1 and p2 = 1 − p1, respectively, where x1 < x2.

It can be shown that for any random variable X the limit of the value of
the distribution function FX(x) for x tending to minus infinity, x → −∞, is
zero. That is

lim
x→−∞

FX(x) = 0. (1.1.27)

Similarly, it can be verified that

lim
x→∞

FX(x) = 1 (1.1.28)

and FX(x) is non-decreasing in x ∈ �.
The above examples indicate that a distribution function does not have to

be continuous. However, one can show that it is always right-continuous, that
is

lim
h→0+

FX(x+ h) = FX(x) (1.1.29)

for all x ∈ �.

Poisson Distribution

An important discrete random variable is the Poisson random variableX char-
acterized by its mean λ > 0. It can be used to model, for instance, the number
of trades per day that occur for a given stock or the number of bankruptcies
that occur during a year. A Poisson random variable X takes values 0, 1, . . .
without any upper bound. The corresponding probabilities pn = P (X = n)
are the Poisson probabilities that are given by

pn =
λn

n !
exp{−λ} (1.1.30)

for n ∈ {0, 1, . . .}, where λ > 0, n! = 1 · 2 · . . . · n for n ∈ N and 0! = 1. These
probabilities are displayed in Fig. 1.1.6 for the intensity parameter λ = 2. We
write X ∼ P (λ) to indicate that X has a Poisson distribution with intensity
λ.

Let Ω = N = {1, 2, . . .} denote the set of natural numbers. A discrete real
valued random variable X is a measurable function from Ω into a finite or
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Fig. 1.1.6. Poisson probabilities for λ = 2

possibly infinite set of distinct real values x1 < x2 < · · · < xn < · · · with
probabilities pn = P (X = xn) for n ∈ N . Its distribution function FX has
the representation

FX(x) =

{
0 for x < x1

∑n
i=1 pi for xn ≤ x < xn+1,

(1.1.31)

for n ∈ N . FX is a right-continuous step-function with steps of height pn at
x = xn. For this random variable the set {x1, x2, . . .} could be used as the
sample space Ω, with all of its subsets being events.

1.2 Continuous Random Variables and Distributions

The modeling of events in a financial context often requires random variables
that take any value in � = (−∞,∞) or subintervals of �. We call a random
variable X a continuous random variable if the probability P (X = x) is zero
for all x ∈ �. If X is a continuous random variable, then the corresponding
distribution function FX will also be continuous.

In cases where the distribution function FX is differentiable, there exists
a nonnegative function fX , called the density function, such that

fX(x) =
dFX(x)
dx

(1.2.1)

for all x ∈ �. However, FX could be differentiable Lebesgue almost everywhere,
that is except possibly on a set of Lebesgue measure zero. It can be shown
that if FX is absolutely continuous, then it can be expressed as integral of the
form

FX(x) =
∫ x

−∞
fX(s) ds (1.2.2)

for all x ∈ �, where fX is the corresponding density function.
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Fig. 1.2.1. The uniform density with a = 0 and b = 1

We shall now describe some commonly occurring examples of continuous
random variables.

Uniform Distribution

Consider a random variable X which takes values only in a finite interval [a, b),
such that the probability of its being in a given subinterval is proportional to
the length of the subinterval. Then the distribution function is given by

FX(x) =

⎧
⎪⎨

⎪⎩

0 for x < a

x− a
b− a

for a ≤ x < b

1 for b ≤ x,

which is differentiable everywhere except at x = a and x = b. The correspond-
ing density function is then of the form

fX(x) =

{
0 for x /∈ [a, b)
1

b− a
for x ∈ [a, b).

(1.2.3)

We say that the random variable X is in this case uniformly distributed on
[a, b) and use the abbreviation X ∼ U(a, b) to denote this fact. For example,
log-returns of a stock could be modeled by a U(−a, a) distributed random
variable with a parameter a > 0 that describes the largest possible absolute
log-return. The density for a U(0, 1) distributed random variable is shown in
Fig. 1.2.1.

Exponential Distribution

The waiting time between two events when there is no memory kept on the
time when the first event occurred, for instance, bankruptcies, catastrophes



1.2 Continuous Random Variables and Distributions 13

Fig. 1.2.2. The exponential density for intensity λ = 2

or changes in credit ratings, can be often modeled by a random variable X
with an exponential distribution given by the distribution function

FX(x) =

{
0 for x < 0

1 − exp{−λx} for x ≥ 0
(1.2.4)

for some intensity parameter λ > 0. FX is differentiable everywhere except
when x = 0 and has as corresponding density function

fX(x) =

{
0 for x < 0

λ exp{−λx} for x ≥ 0.
(1.2.5)

We write X ∼ Exp(λ) to indicate that X is an exponentially distributed
random variable. A larger intensity parameter λ means that it is more likely
that the waiting time between two events is shorter. In Fig. 1.2.2 we plot the
density of the exponential distribution for the intensity λ = 2.

Gaussian Distribution

The Gaussian density function given by

fX(x) =
1√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

(1.2.6)

for x ∈ � has a bell-shaped graph which is symmetric about x = μ. In
Fig.1.2.3 we show the density of an N(0, 1) distributed random variable which
is also called a standard Gaussian random variable. The corresponding stan-
dard Gaussian distribution function FX(x) is everywhere differentiable and
has a sigmoidal-shaped graph, see Fig. 1.2.4. A random variable X with the
density function (1.2.6) is called a Gaussian random variable and we summa-
rize this fact by writing X ∼ N(μ, σ2).
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Fig. 1.2.3. The standard Gaussian density

Gaussian random variables occur so commonly in many applications, in-
cluding financial ones, that they are often said to be normally distributed. The
log-returns of stocks have been widely modeled as normally distributed ran-
dom variables resulting in the well-known lognormal asset price model which
we shall discuss later in detail. For this standard market model the incre-
ments of the logarithm of the stock price, the log-returns, are assumed to be
normally distributed.

Unfortunately, the Gaussian distribution has no explicit analytic repre-
sentation. Since it is often used in finance, for instance, in option pricing and
Value at Risk calculations, it is useful to have an accurate approximation for
the standard Gaussian distribution function N : � → (0, 1). This function
can be approximated, for instance, by the expression

N(x) =
∫ x

−∞
N ′(z) dz = 1 − 0.5 (1 + 0.0498673470x+ 0.0211410061x2

+0.0032776263x3 + 0.0000380036x4

+0.0000488906x5 + 0.0000053830x6)−16

+ ε(x), (1.2.7)

for x ≥ 0, where we have an error term ε(x) with |ε(x)| < 0.00000015, as
established in Abramowitz & Stegun (1972). To obtain values for N(x) for
x < 0 we can use the relation N(x) = 1 − N(−x). Here N ′(·) denotes the
standard Gaussian density function

N ′(x) =
1√
2π

exp
{
−1

2
x2

}
(1.2.8)

for x ∈ �. In Fig. 1.2.4 we graph the standard Gaussian distribution function.
For statistical and other studies it is helpful to know that, for X ∼ N(μ, σ2),
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Fig. 1.2.4. The standard Gaussian distribution

we have, so-called, k-sigma rules, where |X − μ| < k σ approximately with
probability 0.95 for k = 2, 0.9973 for k = 3 and 0.99994 for k = 4.

Gamma Distribution

A gamma distributed random variable X takes only positive real values and
has a density function

fX(x) =
αp

Γ (p)
exp{−αx}xp−1 (1.2.9)

for 0 < x < ∞ and parameters α > 0 and p > 0. Here Γ denotes the gamma
function given by

Γ (p) =
∫ ∞

0

tp−1 e−t dt (1.2.10)

for p > 0. We use the abbreviation X ∼ G(p, α) to indicate that a random
variable X is gamma distributed with the density function (1.2.9) for given
parameters α and p. We plot in Fig.1.2.5 the density of the gamma distribution
for α = 0.5 and p = 2.

In the special case α = 0.5 the gamma distribution is equivalent to the
chi-square distribution with n = 2p degrees of freedom. For n ∈ N this dis-
tribution is obtained as that of a random variable X, that is the sum of the
squares of n = 2p independent standard Gaussian random variables. We ab-
breviate this by writing X ∼ χ2(n). Thus, Fig. 1.2.5 also shows a chi-square
density with n = 4 degrees of freedom.

Let X denote a chi-square distributed random variable with n degrees of
freedom. Its distribution function has the form

FX(x) = χ2(x;n) =
∫ x

0

exp
{
−u

2

} (
u
2

)n
2 −1

2Γ
(

n
2

) du = 1 −
Γ
(

x
2 ; n

2

)

Γ
(

n
2

) (1.2.11)
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Fig. 1.2.5. The gamma density for α = 0.5 and p = 2

for x ≥ 0, where

Γ (u; a) =
∫ ∞

u

ta−1 exp{−t} dt (1.2.12)

is the incomplete gamma function for u ≥ 0, a > −1, see Abramowitz & Stegun
(1972) and Johnson, Kotz & Balakrishnan (1995).

Non-Central Chi-Square Distribution

For a non-central chi-square distributed random variable X ∼ χ2(n, 
) with
n ≥ 0 degrees of freedom and non-centrality parameter 
 > 0 its distribution
function has the form

FX(x) = χ2(x;n, 
) =
∞∑

k=0

exp
{
− �

2

} (
�
2

)k

k !

(

1 −
Γ
(

x
2 ; n+2k

2

)

Γ
(

n+2k
2

)

)

(1.2.13)

for x ≥ 0. In some sense, the non-central chi-square distribution is a weighted
sum of central chi-square distributions with Poisson probabilities as weights.
The corresponding density function is given as

fX(x) =
1
2

(x



)n
4 − 1

2
exp
{
−
+ x

2

}
In

2 −1

(√

 x
)
, (1.2.14)

for x > 0. Here Iν(·) is the modified Bessel function of the first kind with
index ν, which is of the form

Iν(z) =
(z

2

)ν ∞∑

j=0

(
z2

4

)j

j !Γ (j + ν + 1)
. (1.2.15)
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Fig. 1.2.6. Student t density for n = 4 degrees of freedom

Central Student t Distribution

Let Y ∼ N(0, 1) be a standard Gaussian distributed random variable and
Z ∼ χ2(n) be an independent chi-square distributed random variable with
n > 0 degrees of freedom. Then the random variable

X =
Y
√

Z
n

(1.2.16)

turns out to be a central Student t, or in short a Student t, distributed with
n degrees of freedom. Its density function is given by

fX(x) =
Γ (n+1

2 )
Γ (n

2 )
√
π n

(
1 +

x2

n

)−n+1
2

, (1.2.17)

for x ∈ �. We write X ∼ t(n) if the random variable X has a Student t
distribution with n degrees of freedom. In Fig.1.2.6 we plot the density of the
Student t distribution for n = 4 degrees of freedom. As will be shown later,
this distribution seems to model log-returns of indices extremely well.

It is interesting to express the Student t distribution function Ft(n)(x) in
terms of rational and trigonometric functions for small integers n, see Shaw
(2005). For n = 1 one obtains in this way the standard Cauchy distribution

Ft(1)(x) =
1
2

+
1
π

tan−1(x), (1.2.18)

where tan−1(·) expresses the inverse function of tan(·). Further Student t
distribution functions are given by
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Ft(2)(x) =
1
2

+
x

2
√
x2 + 2

, (1.2.19)

Ft(3)(x) =
1
2

+
1
π

tan−1

(
x√
3

)
+

√
3x

π (x2 + 3)
, (1.2.20)

Ft(4)(x) =
1
2

+
x (x2 + 6)
2 (x2 + 4)

3
2
, (1.2.21)

Ft(5)(x) =
1
2

+
1
π

tan−1

(
x√
5

)
+

√
5x (3x2 + 25)
3π (x2 + 5)2

, (1.2.22)

Ft(6)(x) =
1
2

+
x (2x4 + 30x2 + 135)

4 (x2 + 6)
5
2

. (1.2.23)

Symmetric Generalized Hyperbolic Distribution (*)

Various authors have proposed asset price models with log-returns that relate
to the rich class of symmetric generalized hyperbolic (SGH) distributions. This
class of distributions was extensively examined by Barndorff-Nielsen (1977),
see Hurst & Platen (1997) for a study on log-returns. We shall use this class
later on to identify the distribution that fits best observed log-returns.

The SGH density function for a random variable X has the form

fX(x) =
1

δ Kλ(α δ)

√
α δ

2π

(
1 +

(x− μ)2

δ2

) 1
2 (λ− 1

2 )
Kλ− 1

2

(

α δ

√

1 +
(x− μ)2

δ2

)

(1.2.24)
for x ∈ �, where λ ∈ � and α, δ ≥ 0. We set α 
= 0 if λ ≥ 0 and δ 
= 0 if λ ≤ 0.
Here Kλ(·) is the modified Bessel function of the third kind with index λ, see
Abramowitz & Stegun (1972). It can be defined by the integral representation

Kλ(z) =
1
2

∫ ∞

0

uλ−1 exp
{
−1

2
z

(
u+

1
u

)}
du (1.2.25)

for z ∈ (0,∞). For λ = η + 1
2 , where η is a nonnegative integer, one has the

explicit expression

Kη+ 1
2
(z) =

√
π

2 z
exp{−z}

η∑

�=0

(η + 
)!
(η − 
)! 
!

(2 z)−�. (1.2.26)

The SGH density is a four parameter density. The parameter μ is a location
parameter. The two shape parameters for its tails are λ and ᾱ = α δ, defined
so that they are invariant under scale transformations. The other parameters
contribute to the scaling of the density. We define the parameter c as the
unique scale parameter such that

c2 =

⎧
⎨

⎩

2 λ
α2 if δ = 0 for λ > 0, ᾱ = 0,

δ2 Kλ+1(ᾱ)
ᾱ Kλ(ᾱ) otherwise.

(1.2.27)
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It can be shown that as λ → ±∞ and/or ᾱ → ∞ the SGH density
asymptotically approaches the Gaussian density.

To illustrate certain typical SGH densities we shall describe four special
cases of the SGH density in the sequel. These coincide with log-return densities
of important asset price models suggested in the literature.

Student t Density (*)

Praetz (1972) and Blattberg & Gonedes (1974) proposed for log-returns a
Student t density with degrees of freedom n > 0. This is also the log-return
density that arises from observations over long periods of time generated by
the minimal market model (MMM), which will be derived in Chap. 13, see
also Platen (2001). This density is obtained from the above SGH density for
the shape parameters λ = −1

2n < 0 and ᾱ = 0, where α = 0 and δ = ε
√
n.

Using these parameter values the Student t density function for X has then
the form

fX(x) =
Γ (n+1

2 )
ε
√
π nΓ (n

2 )

(
1 +

(x− μ)2

ε2 n

)−n+1
2

(1.2.28)

for x ∈ �, where Γ (·) is again the gamma function, see (1.2.10). Equation
(1.2.28) expresses a generalization of the probability density (1.2.17) of a
central Student t distributed random variable with n degrees of freedom. The
Student t density is a three parameter density. The degree of freedom n =
−2λ is the shape parameter, with smaller n implying larger tail heaviness for
the density. This means that there is a larger probability of extreme values.
Furthermore, when the degrees of freedom increase, that is n → ∞, then the
Student t density asymptotically approaches the Gaussian density. We plot in
Fig. 1.2.7 the central Student t density in logarithmic scale in dependence on
the degrees of freedom n.

Normal-Inverse Gaussian Density (*)

Barndorff-Nielsen (1995) proposed log-returns to follow a normal-inverse
Gaussian mixture distribution. The corresponding density arises from the
SGH density when the shape parameter λ = −1

2 is chosen. For this parameter
value it follows by (1.2.24) that the probability density function of X is then

fX(x) =
√
ᾱ exp{ᾱ}
c π

(
1 +

(x− μ)2

ᾱ c2

)− 1
2

K1

(

ᾱ

√

1 +
(x− μ)2

ᾱ c2

)

(1.2.29)

for x ∈ �, where c2 = δ2

ᾱ . The normal-inverse Gaussian density is a three
parameter density. The parameter ᾱ is the shape parameter for the tails
with smaller ᾱ implying larger tail heaviness. Furthermore, when ᾱ → ∞
the normal-inverse Gaussian density asymptotically approaches the Gaussian
density. Figure 1.2.8 shows the normal-inverse Gaussian density in logarithmic
scale in dependence on the shape parameter ᾱ.




